Sistem matematika adalah himpunan unsur-unsur dengan operasi yang didefinisikan. Operasi-operasi yang telah kita kenal antara lain:

Himpunan-himpunan bilangan secara skematis terlihat seperti pada bagan berikut:

Apakah bilangan real itu dan apa sifat-sifatnya? Untuk menjawabnya, kita mulai dengan beberapa sistem bilangan yang sederhana berikut ini.
Bilangan-bilangan bulat dan rasional
Diantara sistem bilangan yang paling sederhana adalah bilangan-bilangan asli (

1, 2, 3, 4, 5, 6, 7, 8, 9, …
Dengan bilangan ini kita dapat menghitung: buku-buku kita, teman-teman kita, uang kita, dan lain sebagainya. Jika kita gandengkan negatifnya dan nol, kita akan peroleh bilangan-bilangan bulat (

…, -3, -2, -1, 0, 1, 2, 3, …
Bila kita mencoba mengukur panjang, berat benda, atau tegangan listrik, bilangan-bilangan bulat tidak akan memadai. Bilangan ini terlalu kurang untuk memeberikan ketelitian yang cukup dalam sebuah pengukuran. Kita dituntut untuk juga mempertimbangkan hasil bagi (rasio) dari bilangan-bilangan bulat, yaitu bilangan-bilangan seperti:

Bilangan-bilangan yang dapat dituliskan dalam bentuk



Apakah bilangan rasional berfungsi mengukur semua panjang? Fakta yang mengejutkan ini ditemukan pertama kali oleh orang Yunani kuno beberapa abad sebelum masehi. Mereka memperlihatkan bahwa meskipun



Jika kita belum terbiasa untuk bisa membedakan bilangan rasional dan bilangan irasional secara langsung, maka ada satu ciri khusus yang yang bisa kita jadikan pedoman untuk membedakan keduanya.
Sekarang, coba periksa dengan menggunakan kalkulator nilai dari

Akan lebih bagus jika kalkulator yang digunakan memiliki digit lebih banyak dibanding kalkulator biasa, atau Anda bisa menggunakan kalkulator yang tersedia di dalam setiap program windows di komputer Anda, yang ketelitiannya bisa mencapai 34 digit.
Setelah diperiksa, diperoleh sebagai berikut:




Apabila kita perhatikan, dua bilangan yang pertama yaitu




Coba periksa juga bilangan-bilangan lainnya, apakah termasuk bilangan rasional ataukah irasional!
Bilangan-bilangan real
Sekumpulan bilangan (rasional dan irasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol kita namakan bilangan-bilangan real. Atau dengan kata lain, bilangan real adalah bilangan yang dapat berkoresponden satu-satu dengan sebuah titik pada garis bilangan. Pada garis bilangan tersebut terdapat titik asal yang diberi lambang 0 (nol) sebagai titik awal untuk mengukur jarak ke arah kanan atau kiri. Setiap titik pada garis bilangan mempunyai lambang yang tunggal, disebut koordinat titik, dan garis bilangan yang dihasilkan diacu sebagai garis real. Perhatikan gambar!

Kedudukan bilangan real dalam sistem bilangan dapat kita lihat dalam diagram Gambar 1.
Pertanyaan
Dengan mengetahui anggota dari masing-masing himpunan bilangan yang termasuk kelompok bilangan real, bagaimanakah hubungan masing-masing himpunan bilangan asli, bilangan cacah, bilangan bulat, bilangan rasional, bilangan real, dan bilangan kompleks jika kita gambarkan dalam diagram venn?
Operasi pada Bilangan Real
Operasi penjumlahan, pengurangan, perkalian, dan pembagian
a) Operasi penjumlahan

Contoh:
1.
2.
3.
4.
b) Operasi pengurangan

Contoh:
1.
2.
3. -6 – 4 = -6 + (-4) = -10 $
Tidak ada komentar:
Posting Komentar